Shifts from glucose to certain secondary carbon-sources result in activation of the extracytoplasmic function sigma factor sigmaE in Salmonella enterica serovar Typhimurium.

نویسندگان

  • William J Kenyon
  • Sheena M Thomas
  • Erin Johnson
  • Mark J Pallen
  • Michael P Spector
چکیده

Salmonella enterica serovar Typhimurium (S. Typhimurium) elicits the starvation-stress response (SSR) due to starvation for an essential nutrient, e.g. a carbon/energy source (C-source). As part of the SSR, the alternative sigma factor sigma(E) is activated and induced. The authors suspect that this activation is, in part, triggered by changes in the S. Typhimurium cell envelope occurring during the adaptation from growth to carbon/energy starvation (C-starvation), and resulting in an increased need for sigma(E)-regulated factors involved in the proper folding and assembly of newly synthesized proteins destined for this extracytoplasmic compartment. This led to the hypothesis that a sigma(E) activation signal might arise during C-source shifts that cause the induction of proteins localized to the extracytoplasmic compartment, i.e. the outer membrane or periplasm, of the cell. To test this hypothesis, cultures were grown in minimal medium containing enough glucose to reach mid-exponential-phase, plus a non-limiting amount of a secondary 'less-preferred' but utilizable carbon/energy source. The sigma(E) activity was then monitored using plasmids carrying rpoEP1- and rpoEP2-lacZ transcriptional fusions, which exhibit sigma(E)-independent and -dependent lacZ expression, respectively. The secondary C-sources maltose, succinate and citrate, which have extracytoplasmic components involved in their utilization (e.g. LamB), resulted in a discernible diauxic lag period and a sustained increase in sigma(E) activity. Growth transition from glucose to other utilizable phosphotransferase (PTS) and non-PTS C-sources, such as trehalose, mannose, mannitol, fructose, glycerol, d-galactose or l-arabinose, did not cause a discernible diauxic lag period or a sustained increase in sigma(E) activity. Interestingly, a shift from glucose to melibiose, which does not use an extracytoplasmic-localized protein for uptake, did cause an observable diauxic lag period but did not result in a sustained increase in sigma(E) activity. In addition, overexpression of LamB from an arabinose-inducible promoter leads to a significant increase in sigma(E) activity in the absence of a glucose to maltose shift or C-starvation. Furthermore, a DeltalamB : : Omega-Km(r) mutant, lacking the LamB maltoporin, exhibited an approximately twofold reduction in the sustained sigma(E) activity observed during a glucose to maltose shift, again supporting the hypothesis. Interestingly, the LamB protein lacks the typical Y-X-F terminal tripeptide of the OmpC-like peptides that activate DegS protease activity leading to sigma(E) activation. It does, however, possess a terminal pentapeptide (Q-M-E-I-W-W) that may function as a ligand for a putative class II PDZ-binding site. The authors therefore propose that the sigma(E) regulon of S. Typhimurium not only is induced in response to deleterious environmental conditions, but also plays a role in the adaptation of cells to new growth conditions that necessitate changes in the extracytoplasmic compartment of the cell, which may involve alternative signal recognition and activation pathways that are independent of DegS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional analysis of the rpoE gene encoding extracytoplasmic stress response sigma factor sigmaE in Salmonella enterica serovar Typhimurium.

The rpoE gene of Salmonella enterica serovar Typhimurium (S. Typhimurium), which encodes the extracytoplasmic stress response sigma factor sigmaE, is critically important for the virulence of S. Typhimurium. We analysed expression of rpoE by wild-type and mutant bacteria grown in different conditions by S1-nuclease mapping using RNA, and using in vivo reporter gene fusions. Three promoters, rpo...

متن کامل

Small outer-membrane lipoprotein, SmpA, is regulated by sigmaE and has a role in cell envelope integrity and virulence of Salmonella enterica serovar Typhimurium.

SmpA is a small outer-membrane lipoprotein that is a component of the essential YaeT outer-membrane protein assembly complex. In Salmonella enterica serovar Typhimurium (S. Typhimurium), expression of the smpA gene was shown to be directed by two promoters, smpAp1 and smpAp2. The more distal promoter, smpAp1, is dependent upon the extracytoplasmic stress response sigma factor sigma(E). An smpA ...

متن کامل

Multilocus Sequence Typing of the Clinical Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals

Background: Salmonella enterica serovar Typhimurium is one of the most important serovars of Salmonella enterica and is associated with human salmonellosis worldwide. Many epidemiological studies have focused on the characteristics of Salmonella Typhimurium in many countries as well as in Asia. This study was conducted to investigate the genetic characteristics of Salmonella Typhimurium using m...

متن کامل

Genetic transplantation: Salmonella enterica serovar Typhimurium as a host to study sigma factor and anti-sigma factor interactions in genetically intractable systems.

In Salmonella enterica serovar Typhimurium, sigma(28) and anti-sigma factor FlgM are regulatory proteins crucial for flagellar biogenesis and motility. In this study, we used S. enterica serovar Typhimurium as an in vivo heterologous system to study sigma(28) and anti-sigma(28) interactions in organisms where genetic manipulation poses a significant challenge due to special growth requirements....

متن کامل

Detection of Salmonella enterica Serovar Typhimurium from Avians Using Multiplex-PCR

Salmonella enterica serovar Typhimurium and S.enterica serovar Enteritidis are the most frequently isolated serovars from food-borne diseases throughout the world. According to their antigenic profiles, salmonella shows different disease syndromes and host specificities. It is necessary and important to discriminate salmonella serovars from each other in order to ensure that each pathogen and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 151 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2005